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This paper deals with the development of the flow in a curved tube near the 
inlet. The solution is obtained by the method of matched asymptotic expansions. 
Two inlet conditions are considered: (i) the condition of constant dynamic 
pressure a t  the entrance, which may be of practical interest in applications to 
blood flow in the aorta; and (ii) a uniform entry condition. It is shown that the 
geometry and the nature of the entry condition appreciably influence the initial 
development of the flow. The effect of the secondary flow due to the curvature 
on the wall shear is discussed and it is shown that the cross-over between shear 
maxima on the inside and the outside of the tube occurs a t  a downstream dis- 
tance which is 1.9 times the radius of the tube for entry condition (i) while in 
the case of entry condition (ii) it is 0.95 times the radius, which is half the dis- 
tance required in case (i). It is found that the pressure distribution is not signifi- 
cantly influenced by the secondary flow during the initial development of the 
motion. The analysis, which is developed for steady motion, can be extended to 
pulsatile flows, which are of greater physiological interest. 

1. Introduction 
The character of fluid motion in a bend has been of broad interest both experi- 

mentally and theoretically. The first theoretical study of the subject was made 
by Dean (1927, 1928), who pointed out that the dynamic similarity of the fully 
developed flow depends on a non-dimensional parameter 

where W, is the mean velocity along the pipe, Y the kinematic viscosity and a 
the radius of the pipe, which is bent in a circle of radius L. Physically, this para- 
meter can be considered as the ratio of the centrifugal force induced by the circu- 
lar motion of the fluid to the viscous force. The experimental investigations of 
White (1929) and Adler (1934) show that the ratio yC/ys of the resistance coeffi- 
cients (yc and?, are the resistance coefficients for the curved pipe and for a straight 
pipe of the same radius respectively) depends only on D as long as the motion is 
laminar (although this is no longer the case once turbulence has set in). Dean’s 

t Permanent address: Department of Mathematics, Indian Institute of Technology, New 
Delhi. 
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analysis and calculation of the consequent rise in the resistance coefficient were 
restricted to small values of D. Later, Barua (1963) considered fully developed 
motion for large D and obtained an approximate solution by a KBrmBn-Pohl- 
hausen momentum-integral method under the assumption that the motion 
outside the boundary layer is confined to planes parallel to the plane of symmetry 
of the pipe. Numerical solutions for laminar flow have been obtained by McCona- 
logue & Xrivastava (1 968) for moderate values of D and by Greenspan (1973) for 
the whole range of D. 

When a fluid flows through a curved pipe, a pressure gradient directed towards 
the centre of curvature is set up across the pipe to balance the centrifugal force 
arising from the curvature. The fluid near the wall of the pipe is moving more 
slowly than the fluid some way from the wall owing to viscosity and therefore 
requires a smaller pressure gradient to balance the local centrifugal force. As 
a result of these different pressure gradients, the faster-flowing fluid moves 
outwards, whilst the slower-flowing fluid moves inwards. This flow is known 
as the secondary flow and it is superposed on the main stream. I n  the case of a 
circular curved pipe lying in a horizontal plane, the fluid in the middle of the 
pipe moves outwards and that above and below it moves inwards; thus the result- 
ant flow is helical in the top and bottom halves of the pipe. This pattern of a pair 
of helices was first theoretically explained by Thompson (1876). The secondary 
flow has the effect of shifting the high velocity region towards the outer wall and 
creating a much thicker layer of slowly moving fluid a t  the inner wall. However, 
owing to enhanced mixing and momentum transfer due to the secondary flows, 
the total frictional loss of energy near the wall increases and the fluid experiences 
more resistance in passing through the pipe. 

The process of transition to fully developed curved flow from an initial flow 
in a straight pipe was studied by Hawthorne (1951). Here we consider a different 
type of transition, for the case when the curved flow is immediately preceded by 
an inlet to the curved pipe. Interest in this case has recently developed because 
of its possible applications to blood flow in the cardiovascular system. I n  contrast 
to the requirements of engineering, where the increase in resistance due to cwva- 
ture is principally sought, a knowledge of the velocity distribution is required 
in the study of cardiovascular systems so that the distribution of injected sub- 
stances and effects of the distribution of wall shearing stress on the formation of 
arterial lesions may be better understood. Very little data exists on the velocity 
distribution within major arteries, although Seed & Wood (197 1) determined the 
distribution outside the boundary layer within the aorta. Various techniques 
have been used to measure the instantaneous volume flow rate, but they yield 
no information on the form of the velocity profile. A theoretical analysis based on 
fluid-dynamic theory involves many complicated features : viscosity, time de- 
pendence of the flow, elastic boundaries, curvature and the complex geometries 
(see figure 1 ) .  Similar difficulties arise in understanding the extent to which turbu- 
lent flow exists in arteries. Nerem & Seed (1972) suggested laminar flow in the 
aorta a t  Reynolds numbers Re 5 5000. Caro, Fitz-Gerald & Schroter (1969) have 
postulated that low wall shear rates are important in dictating sites of athero- 
genesis. Similarly, flow regimes are of interest because of the influence on 
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pressure-flow relations, the generation of audible sounds and mixing and mass- 
transfer processes. I n  view of these interests of physiologists, a couple of investiga- 
tions on entry flow in a curved pipe have been made in recent years. Pickett 
(1968) adapted the technique used by Atkinson & Goldstein (see Goldstein 1965, 
p. 304) for flow development in a straight pipe to the case where curvature 
is present. The inadequacy of this method has been recently pointed out by Van 
Dyke (1970) and Wilson (1971). Yao (1973) has anaysed the entry flow by taking 
Barua's model for fully developed flow and assuming that the central cross- 
flow is parallel to the plane of symmetry. This assumption is questionable, 
especially near the entry region. Besides, an appropriate choice of the entry 
conditions is important for the flow in the region close to the entrance. Olson 
(1971) investigated the entry flow experimentally by considering (i) flat and (ii) 
parabolic entrance profiles. As was pointed out by Kuchar & Ostrach (1967), 
it is doubtful whether conditions upstream (in the left ventricle and a t  the aortic 
valve) will produce a flat or parabolic velocity profile. 

In  our analysis, we assume that the dynamic pressure across the cross-section 
a t  the entrance to the bend is constant, which is a case of practical interest since 
it corresponds to the curved pipe taking the fluid from a reservoir a t  constant 
pressure. We consider the fluid to be incompressible and viscous. The governing 
equations of motion in dimensionless form involve three parameters? [see 
equations (5)-(  8)] : 

( 2 )  i 
(i) the curvature ratio 6 = a/.L N 0(10-'), 

(ii) theReynoldsnumber 
(iii) thefrequencyparameter e = aA/@ - O(iO-l). 

Re = a R / v  N 0(103), 

As the fluid is pumped into the curved pipe from the reservoir (see figure l), 
a boundary layer similar to that in a straight pipe develops a t  the wall. Thus 
the region consists of two parts: (i) a thin layer near the wall where the viscous 
forces are balanced by the inertia forces and the centrifugal force has a second- 
order effect near the inlet and (ii) an inviscid core in which the centrifugal force 
due to the circular motion of the main body of the fluid along the pipe is balanced 
by the pressure gradient directed towards the centre of curvature. However, as 
the flow develops further downstream, the curvature effects become as important 
as the viscous effects and the inertia forces in the boundary layer, which in turn 
influence the flow in the core due to displacement. This is in contrast to the flow 
for small Dean numbers D, in which case the centrifugal force will always be of 
second order as the fluid flows further downstream. The secondary flow due to 
curvature consists of the transverse flow of the slower-moving fluid particles in 
the boundary layer from the outside of the bend towards the inside and the cross- 
flow of faster-moving fluid particles from inside to  the outside of the bend. Thus, 
the secondary boundary layer behaves as a reservoir receiving the fluid moving 

t The estimate of the orders of magnitude of the parameters is obtained from the following 
data: for the ascending aorta, a = 1-15-2-18 cm (for man) or 0.50 cm (for dogs ; see McDonald 
1960); v = 0.038cgs units at 37 "C (for man); the duration of each systole (for man) is 
approximately 0-3 s, during which about 80 ml of blood is pumped from the left ventricle 
into the ascending aorta. The frequency of the systolic cycle is approximately 70 min-l; h is 
2n times this frequency. 
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ventricle 

FIGURE 1 

towards the outer wall, and also acts as a source because of the fluid leaving it 
a t  the inner wall, which is consistent with the mass conservation of the boundary 
layers in the cross-section of the pipe. The resulting cross-flow forms a stagnation- 
like flow locally along the outer wall whose convective effect prevents the second- 
ary boundary layer from diffusing further out, and hence it will remain thin as 
the flow becomes fully developed in contrast t o  the flow for small Dean number, 
in which case the boundary layer continues to grow downstream until it fills 
the tube and the flow becomes fully developed. Further, in view of the enhanced 
mixing and convective mass transfer due to the secondary flow, the developing 
flow in a curved tube requires a much shorter entrance length to become fully 
developed in comparison to a straight tube. 

2. Formulation of the problem 
Figure 2 shows the system of toroidal co-ordinates (r‘, a, 8)  for the considera- 

tion of motion of fluid through a pipe of circular cross-section coiled in the form of 
a circle. The axis of the circle in which the pipe is coiled is 08 and C is the centre 
of the cross-section of the pipe in a plane that makes an angle 0 with the fixed 
axial plane. OC is of length L, which is the radius of curvature of the coiled tube. 
The plane passing through 0 and perpendicular to OZ will be called the ‘central 
plane’ of the pipe and the circle traced out by C its ‘central line’. r’ denotes the 
distance CP and CL is the angle which CP makes with the line OC produced. Let 
(u‘, v‘, w‘) denote the corresponding velocity components in the (r’, a, 8)  direc- 
tions a t  time t’. 
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c 

FIGURE 2 

Entry and boundary conddtions 

We shall consider two types of entry conditions. 

this case, the injection velocity is given by 
(a )  Constant dynamic pressure across the cross-section at the entrance. In  

(b)  Constant injection velocity, i.e., at  the entrance to the bend, 

u' = v' = 0, w' = V0(1 + A  sin At ' ) ,  (4) 

and the boundary conditions are 

Non-dimensional equations of motion 

Near the entrance, it is natural to refer the velocity t o  the characteristic entrance 
velocity wo, the co-ordinates r' and s' to a, the pressure to pmg and time to llh, 
where s' = L0 and p is the density of the fluid. The governing equations of motion 
are 

= 0, ( 5 )  
u 1 + 2 B  cosa v, avsina ws 
r 1+drcosa r l+drcosa+l+$reosa u,+- +-- 
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uv 6w2sina vv, + WVS 
svt+uvT+r I+Srcosa +7+ 1 +6rcosa 

6w, sin a: +-  vs, - Wsa 

(1+6rcosa)2 r ( l+6rcosa)  ( 1 + 6 r c 0 s a ) ~  

+ (%+ a 1 +6rcosa 6cosa ) (v,+;-:)], (7 )  

Suwcosa vw, 6vwsinu ww, +-- 
Ewt+uwr+ 1 +6rcosa r I +6rcosaf  1 +6rcosu 

6wcosa W,, 1 a Swsina 
1 + 2cos  a + [ (: + :) (w. + 1 + 6r cos a ) + 7 - r % ( I  + 6r cos a) 

- _ -  

-(!!+A) us -ix( vs )], (8)  
ar r I+Srcosa r a a  I + ~ ~ c o s ~ :  

where the unprimed variables are in dimensionless form and the parameters E ,  6 
and Re are defined in ( 2 ) .  

It may be noted that, in the absence of viscosity, the exact solution of the 
above equations satisfying the entry condition (3) is 

u = v = 0, w = (I+Asint)/(l+&rcosa), j  

- €AS cost. 
I (1+Asint)2 
2 (1 + 6r c0sa)Z 

p = -- (9) 

Steady entry problem 

We shall now limit our discussion t,o the steady case. Since E N O(IO-l), this 
analysis can later be extended to the quasi-steady situation in a straightforward 
manner. 

The governing equations are (5)-( 8) with terms containing time derivatives 
dropped and the following conditions are to be satisfied. First, 

u = v = 0, w = 1/(1+6rcosa) at s = 0, ( 10) 

which corresponds to the condition of constant dynamic pressure a t  the entrance 
to the bend. The solution for the uniform entry condition problem can be obtained 
from this discussion after some minor modifications and will be given a t  the end 
of this analysis. Second, 

u=v=w=O a t  r = l .  (11) 
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3. Solution 
As the fluid is injected into the pipe, the central core of the fluid will not be 

influenced by viscosity, whose effects will be confined to a thin layer near the wall 
of the pipe. The flow can, therefore, be considered to be divided into two regions: 
(i) an inviscid core in which the centrifugal force due t o  the curved motion of the 
main body of the fluid along the pipe is balanced by the pressure gradient directed 
towards the centre of curvature and (ii) a thin boundary layer in which the viscous 
forces are balanced by inertia forces. As in the classical boundary layer, pressure 
will be impressed on the flow in the boundary layer by the external flow, which im- 
plies that the azimuthal pressure gradient, which is of second order in the initial 
stages of motion, will induce a transverse flow in the boundary layer from the 
outside of the bend towards the inside. The effect of the growing boundary layer 
on the flow in the core will be to accelerate the motion due to the displacement 
effect of the boundary layer, and the effect of the second-order transverse flow 
in the boundary layer will be to induce a cross-flow from the inside of the bend 
towards outside to satisfy the mass conservation principle. The analysis shows 
that the secondary flow due to the curvature effects in the region close to the entry 
can be obtained by perturbing the solution for developing flow in a straight tube. 

First-order solution in the inviscid core 

The solution in the core is just the undisturbed entry flow 

(12) 1 u = v = 0, w = 1/(1+Srcosa), 

p = - 1/2(1 +8rcosa)2. 

First-order boundary layer 

In  view of the above analysis, we magnify the radial co-ordinate r,  which is very 
small in the thin boundary layer. Accordingly, we introduce, as in the classical 
boundary layer, 

(13) 
r = 1 -,t?q, u = bii, where /3 = Re-*, 

v(r, a, 8, p, 8 )  = v"(q, a ,  s, p, 81, etch 

Further we assume that 

and similar expansions would hold for v", 65 and 9. Here Coo is the corresponding 
straight-tube solution and GOl is the curvature effect. 

t The order of the term after Go would be determined by applying the condition for 
matching with the flow in the inviscid core due to displacement. The subsequent analysis 
would show that a = 1 .  
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O( 1) equations, matching and boundary conditions 

In  view of (13) and (14), we obtain the following equations from (5)-(8) : 

- Goo, + cooa + Goos = 0, 

1700, = 0, 

- Goo fiooq + coo cooa + ~ 0 0 ~ 0 0 s  = - Pooa + COO,,' 

- Goo Goo, + coo Gooa + Goo Goos = - Poos + @oov,. 

The appropriate boundary conditions are - 
Goo = coo = woo = 0 at 7 = 0 

and the condition for matching with the undisturbed inviscid flow yields 

i700-+0, Goo+ 1 as q+m, 

which also holds a t  s = 0. 
From (16), we find that the pressure is impressed on the boundary layer by the 

external flow and so the pressure-gradient terms drop out of (17) and (18). The 
matching condition (20) suggests that Goo is a function only of 7 and s. This implies 
that do, satisfies a homogeneous equation and homogeneous boundary condition 
and so the solution is 

Goo and Goo now satisfy the usual Blasius-type equations and boundary conditions 
and so we introduce 

where goo is the stream function: 

f ioo 3 2  0. (21) 

c = 7/(2s)4 $00 = (2SPfOO(C)? (22) 

coo = $oos, coo = $00,. (23) 

Thus, we have f$+foofE;o = 0, (24a) 

fOO(0) =f;o(O) = 0, f&(m) = 1, (24b) 

with boundary conditions 

which is the familiar problem solved by Blasius for the flow along a flat plate. 

O(S) equations, matching and boundary conditions 
The governing equations, are from (5)-( 8), 

- Go,, + gola + GOIS - Go, 00s a = 0. (25) 

1701, = 0, (26) 

- Goo~ol,  + ~ o o ~ o l s  + ego sin a = - j jOla  + 601,13, (27) 

- GOOGOl, - %)&o, + cooGo,s +Golcoos - G~0G~OS cos a = - @ols +Go,,,. (28) 

(29) 

v"ol+O, Go,+ -cosa as q+m, (30) 

The boundary conditions are 

Go, = Col = wol = 0 at 7 = 0 
and the condition for matching with the inviscid flow in the core is 

which also holds a t  s = 0. 

- 
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Again the pressure is impressed on the boundary layer by the external flow, 
and from (12) we find that 

fiOl = cosa. (31) 

Hence, the pressure gradient and the centrifugal force have only a second-order 
effect in the boundary layer during the initial stages of the motion. 

Equation (27) and the pressure given by (31) suggest that 

%lbl(q, a, 4 = Gl(% 4 sin a, (32) 

and hence, from (25), it follows that 

co1(7], 01,s) = UO,(,, 8) cosa, Go1(q, a, s) = %1(q, 8) cosa. 

- u o ~ , + ~ l + % , s - ~ o o s  = 0 ,  (34) 

%,, + ~ 0 0 ~ 0 1 ,  - coo%s = - 1, (35) 

(33) 

Equations (25)-( 28) now reduce to 

Rl,, + coo %l, - Goo %l8 + 001 coo, - %lZOOs + GooGoOs = 0 (36) 

and the corresponding boundary and matching conditions become 

Ool = Tol = Pol = o at q = 0,  (37) 

pIol-+O, Fol-+-l as ?-+a. (38) 

(The latter two conditions also hold a t  s = 0.) Again, we introduce stream 
functions JOl and $ol such that 

c1 = $01,' %l = $Ol ,+$OO, ,  0 0 1  = $OlS+$Ol. (39) 

The governing equations and conditions (38) suggest that 

The appropriate equations are now 

(41) 

(42) 

(43) 

I 
I 
1 

fd: +foofo; + f d ' O f O l  = 0, 

fl; +fO0f:2 - 4f&fi2  +f&(2gol + 5fd = 0, 

dl +foo s& - 2f:os;l = 2 ( f$  - 1) 9 

with fol(0) = f&(O) = 0, f & ) )  -+ - 2 as t: -+ 00; 

with f 0 2 ( 0 )  = fhZ(0) = 0, f12(5) -+ 0 as 5 3 00; 

with sodo) = s61(0) = 0,  961(5) -+ 0 as 5 -+ a. 

This is a system of linear ordinary differential equations whose numerical 
solution can be determined in a straightforward manner. In  fact, the solution of 
(4 1) can be expressed in terms of foo and is given by 

f 0 l  = - [foe + $f&l. (44) 
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The first-order boundary-layer solution is therefore given by 

6-30 = f & )  + S cos +f& + s"f2] + O( P) ,  (45) 

(461 Go = Gsin (a)  sg&+ O(S2), 

'&J = (2s)-b[foo - lf& f 8 cosa(2s2go, + 582f,2 - '3:S"fAz + f o l -  c,f:fb)] + O(a2), (47) 

which shows that the curvature effect, which is of second order initially, becomes 
larger as the flow proceeds further downstream. When s = 0(6-4), the curvature 
effect becomes as important as the viscous and inertia forces in the boundary 
layer. Infact the aboveanalysisis nolongervalidwhens = O(S4) .  Inasubsequent 
paper, we shall discuss the flow development in this region and further down- 
stream and show how the fully developed flow is approached. We shall, therefore, 
confine our analysis in this discussion to  the flow in the region close to the entry. 

Plow due  to displacement 

We find that the radial component G has not been matched with the correspond- 
ing undisturbed inviscid core velocity, which induces a second-order flow in the 
core. Now, as < + co, 

G E .//I N (2S)-4 {-/?I + S cos .[/I3 + s2(2pz + lip4)]}, (48) 
where \ P1 = lim (c-foo) = 1.21678, 

c+m 

p2 = limg,, = 1.139274, 
c-w 

I p3 = lim(fol+25) = 1.21678, 
5+m 

(49) 

pi = limf,, = 0.522839. 
5-m 

This suggests that the flow field in the core will be of the form 

~ ( r ,  a, S, p, 8) = pul(r ,  a, 896) + o(/I1+b),t b > 0, 

a, 8, p, 6 )  = Pv,(., a, 8,s) + o(pl+b), 

w(r,  a, s, p, 6) = l/( 1 + Sr cosa) +pwl ( r ,  a, s, S )  + O(pl+b), 
p(r ,  a, s, P, 6)  = - 1/(2( 1 + Sr C O S ~ ) ~  +/Ip,(r, a, s,  6)  + O(pl+b). 

We further assume that 

ul(r, a, 8,s) = ulo(r, a, 8) + Sull(r, a,  s )  + O ( P )  (51) 
and similar expansions for v,, w, and p,. Here, ul0 is the straight-tube effect and 
ull represents the curvature effect. 

From (5)-(8), we obtain the following equations. 

~ 1 O r  + u d r  + 810a/r + ~ 1 0 s  = 0, 
At O(P) 

~ 1 0 s  = - ~ 1 o r j  ~ 1 0 s  = - r - ' ~ I o a ,  wlos = -PlOs* (53) - (55)  

-f The order of the next term after pul would be determined by applying the condition 
for matching with the solution of appropriate order in the second-order boundary layer. 
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The appropriate matching condition from (48) is given by 

ul0 = -pl/(2s)3 at  r = I, (56a) 

and the entry conditions are 

pl0 = wl0 = 0 at s = 0. 

ulb + ull/r + ul0 cos a + wlla/r - vlo sina + wlls- T cos (a) wlos = 0, 

ulls - 2r cos (a )  ulos - 2 cos (a)  wl0 = -pl17, 
vllS - 2r cos (a)  vlos + 2 sin (a )  wl0 = - riplla, 

wlls - 2r cos (a)  wlm = - plls + r cos (a) plOs. 

(57) 

(58) 

(59) 

(60) 

ull = cos a(2s)-3 [!Is + sz(2p, + 5p4)] at r = 1 (614  

(sib 1 

The matching condition (48) yields 

and the entry conditions are 

pll = wll = 0 at s = 0. 

Solution of O(p)  equations 

Integrating (55) with respect to s and using (56b) ,  we obtain 

Condition (56a) suggests that 
PlO = -*lo. (62) 

PlOk, a, 8) = Pl&, 4, (63) 

(64) which implies that Vl0 = 0 

and Plow + +PlW + PlOSS = 0- (65) 

Fourier sine transformation yields the solution which satisfies (56) : 

which represents the effect of displacement due to the boundary layer in the 
case of a straight tube. 

Solution of O(pS) equations 

The matching condition (61 a) and (57)-(60) suggest that 

1 (67) 
ull(r, a, s )  = Ull(r, s) cosa, wll(r, a, 5) = &,(r, s) sina, 

wll(r, a, s )  = q , ( r ,  s) cos a, pl l ( r ,  a, s)  = l&(r, s) cos a. 

Integrating (60) with respect to s, using (62), (66) and the entry condition (61 b) ,  
we obtain 

Equations (58) and (59) now yield 

W,, - rwlo = - Pll. (68) 
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and hence, from (57), we obtain 

Pllrr + Pldr - P11/r2 + Glss  = 7 ~ 1 0 ,  + 2rw1,. (71) 

Again, using Fourier sine transformation, the solution of (71) satisfying (61) is 

The analysis can be extended systematically to  obtain higher-order terms 
of the solution in the boundary layer and the core. 

4. Results and discussion 
Boundary layer 

8, = f& + s cos a(f;, +fhl + S2fh2) + O( 62). (73) 

Here, the first term on the right-hand side is the Blasius boundary-layer term and 
the second term represents the curvature effect; the first two terms inside the 
brackets represent the variation of the Blasius boundary layer with a due to 
(i) dependence on a of the flow velocity just outside the boundary layer and 
(ii) dependence on a of the distance traversed along the curved wall for given s 
respectively, and the last term represents the development of the secondary flow. 
The solution shows how the curvature effect, which is initially of second order, 
grows as the fluid flows further downstream. A similar interpretation can be 
given for the other components: 

(74) Go = 6sin (a)  sg& + 0(a2), 

= ~ 2 ~ ~ - Q ~ f o o - ~ f ~ + ~ ~ ~ ~ ~ r f o l - ~ f ~ l + ~ 2 ~ 2 ~ o l + 5 f 0 ,  -&2)l)+o(~2). (75) 

The axial skin friction is given by 

7,s = - ( P P F / W + [ f ; o ( O )  + 6cosa(f;o(0) +flw) + S2f6'(0))1 

= - (ppEg/2a~)* [0-4696 + ~ C O S  a(0 .2562~'  - 0*9392)]. (76) 

Here, the first term is the skin friction for the straight tube and the next terms 
represent the curvature effect, which is of second order initially but grows as the 
flow develops further downstream. The second term is the effect of the secondary 
velocity and the last term is the effect of reduced/increased external flow and the 
longer/shorter wall length traversed by the fluid a t  the outsidelinside of the bend. 
Since the effect of the secondary velocity on the skin friction is initially small, 
the fluid experiences less resistance in the outer part of the bend in comparison 
with the straight-tube value owing to the reduced external flow and the longer 
wall length and it experiences increased resistance initially at the inside of the 
bend owing t o  the increased external flow and shorter wall length. The boundary 
layer of retarded fluid is growing all round the tube but the effect of the secondary 
flow, which increases with downstream distance, is that a t  the outside of the 
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bend i t  thins the boundary layer because retarded fluid is drawn off in the azi- 
muthal direction, which results in reduced displacement and increased skin 
friction. On the other hand, the situation will be reversed for the inner side of the 
bend because the secondary flow brings in additional retarded fluid and thickens 
the boundary layer, which results in increased displacement and consequently 
a decrease in skin friction. Thus the cross-over (the point where the effect of 
secondary velocity just overcomes the effect of reduced/increased external flow 
and longerfshorter wall length on the skin friction a t  the outside/inside of the 
bend) occurs a t  

a position 1.9 radii from the inlet, which is independent of the curvature of the 
tube as well as the Reynolds number of the flow. The azimuthal skin friction is 
given by 

where gil(0) = 1.535795, which increases as the fluid flows further downstream. 
The mean drag coefficient C,, defined by 

s N 1.9) (77)  

r,, = - (ppW@as)i &sin (a)  sg&(O), (78) 

(where for the outside of the bend a, = - in and a2 = in, and for the inside a, = in 
and az = tn), is given by 

for the outside or inside wall, where 1 is the length of the tube and 
C D  = 2(2/Re)4 [f&O) +_ (26/n) ( f & ( O )  +f:l(O) ++&y&(O)]l-3 (79) 

f&(O) = 0.4696, f,&(O) = - 1.4088, f12(0) = 0.2562. 

The equation for the limiting streamlines a t  the wall can be written as 

V - lim - = lim 2: = '2, da _ -  
as wlw r-+lwr 7,s 

aa 6 sin (a )  sg& (0) _ -  
as -f;(o) + ~ C O S ~ [ ~ : ~ ( O )  +f:l(o) +Sy&(o)j' therefore 

These streamlines are plotted in figure 3. 

Inviscid wre 

Here, the first term - 3 + 6r cos CL + O ( P )  is the pressure needed to maintain the 
flow pattern under the centrifugal force and the second term, the integral, repre- 
sents the displacement effects of the boundary layer and the influence of the 
secondary flow. The first term in the integral is the solution for a straight tube and 

P1-m 65 34 
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Constant dynamic pressure 

FIGURE 3. Limiting streamlines. -, 6 = - L . -  8 ,  0-, 6 = Q. 

represents the pressure required to accelerate the flow along the tube owing to the 
displacement effect of the boundary layer; the second term in the integral 
represents the interaction between the cross-flow and the accelerating flow. 

A similar interpretation can be given to the expression for the velocity com- 
ponents : 

w = 1-6rcosa+O(62)+- 2p1 V - t  I,( Vr) 
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Vorticit y 

The vorticity x in the boundary layer is given by 

(85)  I xr = - 6 sin a[2&o +&l+ 9;1- B C d l +  S%21? 

2,  = [p(  2s)'I-l [f& + f3 COS a(f& +f& + S2ff6:l)], 

xs = - [6sina/p(2s)*]sg~,, 

which decays exponentially away from the wall. Since the boundary layer is 
thin, the motion in the core will remain irrotational. Figures 4 ( a )  and ( b )  show 
how the radial and axial vorticities diffuse out in the boundary layer. As the 
flow develops, the curves become steeper owing to the secondary flow. Both the 
components are zero in the plane of the bend and their magnitude increases 
azimuthally, becoming maximum a t  a = in, +7r (upper and lower walls). Figure 
4 ( c )  represents the decay of the azimuthal vorticity in the boundary layer. During 
the initial stages of the motion, the vorticity decays much faster on the inner 
side of the bend in comparison with the outer side owing to the influence of the 
external flow on the boundary layer. The graphs are flattened as s increases 
owing to the decrease in vorticity as in the classical case. 

Streamlines in the cross-section 

The projection of the streamlines on a cross-section s = so of the tube is given by 

where the suffixes c and b represent the velocity components in the core and the 
boundary layer respectively. Figures 5 (a)-(d) show these streamlines for various 
axial distances as the flow develops further downstream. 

The boundary layer of the retarded fluid is growing all round the tube, which 
results in an accelerated axial motion in the core and (in view of mass conserva- 
tion) a radial flow converging towa,rds the centre of the cross-section (as in a sink), 
where the cross-sectional velocity components are zero in the case of a straight 

34-2 
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tube. The curvature effect, which is small initially, is that the retarded fluid 
particles are drawn off azimuthally from the outer side of the bend towards the 
inner side, which implies that fluid particles are pushed out from the inner side 
towards the core. Thus the secondary flow enhances the pushing of the fluid 
particles from the inner part of the bend towards the core. On the other hand, 
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Inner 
side O P  ' 

Inner Outer 
side side 0 

Inner Outer 
side 0 side 

FIUIJRE 5. Streamlines in cross-sectional planes. (a )  s = 0.1, O P  = 0.44 x 1O-I. 
( b )  s = 0.6, O P  = 2.27 x 10-l. (c) 8 = 1.1. (d) s = 2.1. 

its effect near the outer part will be to diminish continually the pushing of fluid 
particles until the fluid is entrained by the boundary layer. 

This effect is supplemented by a forcing effect occurring within the core as 
follows. The general acceleration of all the core fluid produces a longitudinal 
stretching of fluid particles a t  a greater rate on the inside of the bend (where 
distances traversed are shorter) than on the outside. This differential stretching 
sucks fluid from the outside round into the inside, and supplements the boun- 
dary -layer displacement effect. 

The combination of the two effects induces a movement towards the outside 
in the plane of symmetry balanced by an opposite movement away from that 
plane. 
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The result is that  the stagnation point of the cross-sectional flow (which is 
a t  r = 0 in the case of straight tube) moves along the line of symmetry towards 
the outer wall as the fluid moves further downstream. At s = 0.1 (figure 5 a )  this 
point is at  r = 0.044, and a t  s = 0.6 the point shifts to r = 0.227 (figure 5 b) .  This 
outward shift of the stagnation point continues until the cross-flow from inner 
to outer wall starts taking place, which occurs when s N 1, i.e. equal t o  the radius 
of the tube. The azimuthal velocity decreases as the fluid moves further down- 
stream; in the core on the outer side of the bend, it increases away from the line 
of symmetry with the azimuthal angle, the maximum rate of increase being near 
the line of symmetry. I n  the region on the inner side of the bend it decreases as a 
increases and the rate of decrease is a maximum near the line of symmetry. 
The radial variation of the azimuthal velocity is negligible. The pattern of the 
streamlines in the cross-sectional plane is depicted in figures 5 (a)-(d). Mathe- 
matically, there are two singularities when s is small: (i) the sink-like origin, 
which is a node where the streamlines converge (figures 5 a, b ) ,  and (ii) the stagna- 
tion-type point P, which is a saddle point. The distortion of the streamlines is due 
to the enhancedldiminished pushing of fluid particles on the innerlouter side of 
the bend and the azimuthal velocity induced by the curved flow. After the 
cross-flow has set in, the only singularity will be the nodal point at  the origin as 
shown (figures 5c,  d) .  The streamlines are stretched as s increases because the 
azimuthal velocity decreases and radial velocity increases with downstream 
distance. The slight tilt of the streamlines towards the outer side of the bend is 
due to the tendency of the fluid particles in the core to move outwards. 

Streamwise velocity 

Figures G(a) and ( b )  show the accelerating effect of the boundary layer as the 
flow develops and the gradual outward shift of faster-moving particles which 
takes place as the streamwise distance increases, which is the effect of the cross- 
flow in the inviscid core. The behaviour of the contour near r = 0 (figure Ga) 
is due to the peculiar behaviour a t  the origin pointed out earlier. 

Figure 7 (a )  shows the linear variation of the streamwise velocity with radial 
distance. The decrease in velocity from the inner to the outer side of the bend is a 
maximum in the plane of the bend and gradually becomes smaller until the varia- 
tion becomes negligible along a = &n, @r (the upper and lower walls). This is due 
to the displacement effect of the boundary layer being influenced by the external 
flow. The profile at s = 2-0 indicates a slight increase in the slope, which is the 
effect of the secondary flow. 

Figure 7 ( b )  represents the variation of streamwise velocity in the boundary 
layer. It shows the steeper profile on the inner side of the bend near the entrance 
region due to the influence of the external flow. The secondary flow steepens the 
profile on the outer side and flattens it in the inner side, which is reflected in the 
profiles a t  s = 2.4. 

Azimuthal velocity 
Figure 8 (a )  represents the radial variation of the azimuthal velocity, which is 
negligible because the flow is irrotational in the core and there is very small 
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FIGURE 6. Streamwise-velocity contours. (a)  s = 0.1. ( b )  s = 2.1. 

azimuthal variation of the radial velocity. The azimuthal velocity is zero in the 
plane of the bend and increases azimuthally, the maximum velocity being along 
a = Qv, Qn-. The velocity decreases continuously as the flow develops. 

Figure 8(b )  shows how the transverse velocity profile in the boundary layer 
becomes steeper with increasing s. 

Pressure drop 

Figures g(a)  and ( b )  show that, during the initial development of the flow, the 
pressure distribution is not appreciably influenced by the secondary flow. 
Figure 9 ( a )  shows the linear dependence of the pressure on the radial co-ordinate 
which occurred at  the entry. Figure 9 ( b )  represents the pressure drop with the 
streamwise co-ordinate, which is almost the same as for the entry flow in a straight 
tube. 
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(b)  in the boundary layer. 
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FIGURE 8. (a) Rtidial variation of azimuthal velocity. (a) Secondary velocity 
in the boundary layer c( = &r. 

Solution for uniform entry 

One can check in a straightforward manner that, if the injection velocity is 
uniform, the results can be obtained from the above analysis by replacing p3 
by +p3 and fol by ifol. Besides, the following expansions will hold for p and w in 

the core: p = Srcosa+0(62) +pr&+Sp;] +O(pSz), (87 a )  

(87 b )  

where is obtained from (76) by replacing p3 by 4p3, 
w = 1 +P[WlO + Sw;,] + o(pSt), 

where wil is obtained from (77) by replacing p3 by +p3. The axial skin friction is 
given by 

Tw, = - (ppV;/2as)+[fi$(O) +Scosa{fi$(0) ++f&(O) +SafOl~(O)}l 
= - (ppW$/2as)4 [0.4696 + S cos ~ ~ ( 0 . 2 5 6 2 ~ ~  - 0.2348)]. (88) 

The term 0 . 2 5 6 2 ~ ~  is solely due to the longer/shorter wall length on the outer/ 
inner side of the bend. In this case, we find t'hat the cross-over occurs at  

s 21 0.95, (89) 
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FIGURE 9. (a )  Pressure ws. r in the plane of the bend. ( b )  Pressure v5. s 
along the centre-line. 

which is half the distance obtained for the entry condition of constant dynamic 
pressure. The influence of the entry condition on the initial development of the 
flow is understandable because comparison of (76) with (88) shows that the fric- 
tional resistance on the outer side of the bend is smaller in case (i) (constant 
dynamic pressure) than in case (ii) (unform entry) because the external velocity 
1 - Sr cos a in case (i) is smaller than one, the value in case (ii). Likewise, on the 
inside of the bend, the external velocity is larger in case (i) and hence the frictional 
resistance is larger in this case. 

Since the new entry condition does not alter the transverse velocity gObl in 
the boundary layer, the azimuthal skin friction will remain the same in the two 
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cases. However, since the limiting streamlines a t  the wall depend on the relative 
order of magnitude of the azimuthal and longitudinal pulling, their positions will 
not be the same in the two cases. Figure 3 shows that, on the outside of the bend, 
the streamlines in case (i) are bent more owing to the smaller axial skin friction and 
on the inside of the bend, streamlinesin case (ii) are bent more owing to the smaller 
axial skin friction in this case. The effect of the curvature ratio shows (figure 3) 
that the smaller the curvature ratio 8, the smaller is the distortion of the stream- 
lines, which is understandable because the initial flow development in a curved 
tube is a perturbation of an entry flow in a straight tube. The analysis also shows 
that the choice of entry condition influences the initial development. of the flow 
but does not significantly affect it further downstream. 
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